Sort by
A <i>Pythium myriotylum</i> Small Cysteine-Rich Protein Triggers Immune Responses in Diverse Plant Hosts

The oomycete Pythium myriotylum is a necrotrophic pathogen that infects many crop species worldwide, including ginger, soybean, tomato, and tobacco. Here, we identified a P. myriotylum small cysteine-rich protein, PmSCR1, that induces cell death in Nicotiana benthamiana by screening small, secreted proteins that were induced during infection of ginger and did not have a predicted function at the time of selection. Orthologs of PmSCR1 were found in other Pythium species, but these did not have cell death-inducing activity in N. benthamiana. PmSCR1 encodes a protein containing an auxiliary activity 17 family domain and triggers multiple immune responses in host plants. The elicitor function of PmSCR1 appears to be independent of enzymatic activity, because the heat inactivation of PmSCR1 protein did not affect PmSCR1-induced cell death or other defense responses. The elicitor function of PmSCR1 was also independent of BAK1 and SOBIR1. Furthermore, a small region of the protein, PmSCR186-211, is sufficient for inducing cell death. A pretreatment using the full-length PmSCR1 protein promoted the resistance of soybean and N. benthamiana to Phytophthora sojae and Phytophthora capsici infection, respectively. These results reveal that PmSCR1 is a novel elicitor from P. myriotylum, which exhibits plant immunity-inducing activity in multiple host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Open Access
Relevant
Focus on the Plant Endomembrane System in Molecular Plant-Microbe Interactions

Interactions between plants and microbes are ubiquitous. The outcomes of these interactions involve interkingdom communication, with myriad, diverse signals moving between microbes and their potential plant hosts. Years of biochemical, genetic, and molecular biology research have provided an overview of the landscape of the repertoires of effectors and elicitors encoded by microbes that allow them to stimulate and manipulate responses from their potential plant hosts. Similarly, considerable insight into the plant machinery and capacity for responding to microbes has been gained. The advent of new bioinformatics and modeling approaches has greatly contributed to our understanding of how these interactions occur, and it is expected that these tools, coupled with burgeoning genome sequencing data, will eventually allow the prediction of the outcome of these interactions and whether they will result in a relationship that benefits one or both partners. As a complement to these studies, cell biological studies are elucidating how cells in the plant hosts behave in response to microbial signals. Such studies have brought new attention to the indispensable role of the plant endomembrane system in determining the outcome of plant-microbe interactions. This Focus Issue addresses not only how the plant endomembrane acts locally to mediate responses to microbes but, also, the importance of the plant endomembrane beyond the plant cell borders for cross-kingdom effects. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.

Open Access
Relevant
Realizing the Full Potential of Advanced Microscopy Approaches for Interrogating Plant-Microbe Interactions

Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

Open Access
Relevant
NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host <i>Arabidopsis thaliana</i>

Nitrogen is an essential macronutrient and a key cellular messenger. Plants have evolved refined molecular systems to sense the cellular nitrogen status. This is exemplified by the root nodule symbiosis between legumes and symbiotic rhizobia, where nitrate availability inhibits this mutualistic interaction. Additionally, nitrate also functions as a metabolic messenger, resulting in nitrate signaling cascades which intensively crosstalk with other physiological pathways. Nodule inception-like proteins (NLPs) are key players in nitrate signaling and regulate nitrate-dependent transcription during legume-rhizobia interactions. Nevertheless, the coordinated interplay between nitrate signaling pathways and rhizobacteria-induced responses remains to be elucidated. In our study, we investigated rhizobia-induced changes in the root system architecture of the non-legume host arabidopsis under different nitrate conditions. We demonstrate that rhizobium-induced lateral root growth and increased root hair length and density are regulated by a nitrate-related signaling pathway. Key players in this process are AtNLP4 and AtNLP5, because the corresponding mutants failed to respond to rhizobia. At the cellular level, AtNLP4 and AtNLP5 control a rhizobia-induced decrease in cell elongation rates, while additional cell divisions occurred independently of AtNLP4. In summary, our data suggest that root morphological responses to rhizobia are coordinated by a newly considered nitrate-related NLP pathway that is evolutionarily linked to regulatory circuits described in legumes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

Open Access
Relevant